Local geometrised Rankin-Selberg method for GL(n) and its application

نویسنده

  • Sergey Lysenko
چکیده

We propose a geometric interpretation of the classical Rankin-Selberg method for GL(n) in the framework of the geometric Langlands program. Our main result is local, its classical counterpart is the RankinSelberg computation of convolution of two Hecke eigenforms with an Eisenstein series. For n = 2 we apply it to prove a global result that gives a geometric version of the computation of the scalar product of two normalized cusp Hecke eigenforms as a residue of the Rankin-Selberg convolution. Méthode de Rankin-Selberg locale géométrisée pour GL(n) et son application Résumé. Nous suggérons une interprétation géométrique de la méthode classique de Rankin-Selberg pour GL(n) dans le cadre du programme de Langlands géométrique. Notre résultat principal est local, son analogue classique est le calcul due à Rankin-Selberg de la convolution de deux formes automorphes, qui sont vecteurs propres des opérateurs de Hecke, avec une série d’Eisenstein. Pour n = 2 on en déduit un résultat global qui fournit une version géométrique du calcul du produit scalaire de deux formes automorphes cuspidales comme un résidue de la convolution de Rankin-Selberg. 1. Local result for GL(n) Fix an algebraically closed ground field k of characteristic p > 0, a prime l 6= p, an algebraic closure Q̄l of Ql, a finite subfield Fq ⊂ k, and a square root of q in Q̄l. Let X be a smooth complete connected curve of genus g ≥ 1 over k. Fix n > 0, d ≥ 0. Denote by Qd the stack that classifies the collections (0 = L0 ⊂ L1 ⊂ . . . ⊂ Ln ⊂ L, (si)), (1) where Ln ⊂ L is a modification of rank n vector bundles on X with deg(L/Ln) = d, (Li) is a complete flag of subbundles on Ln, and si : Ω →̃Li/Li−1 is an isomorphism ((i = 1, . . . , n),Ω is the canonical invertible sheaf on X). We have a map μ : Qd → A 1 k which at the level of k-points sends the above collection to the sum of n− 1 classes in k→̃Ext(Ω,Ω)→̃Ext(Li+1/Li, Li/Li−1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global geometrised Rankin-Selberg method for GL(n)

We propose a geometric interpretation of the classical Rankin-Selberg method for GL(n) in the framework of the geometric Langlands program. We show that the geometric Langlands conjecture for an irreducible unramified local system E of rank n on a curve implies the existence of automorphic sheaves corresponding to the universal deformation of E. Then we calculate the ‘scalar product’ of two aut...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

Large Sieve Inequalities for GL(n)-forms In the Conductor Aspect

Duke and Kowalski in [6] derive a large sieve inequality for automorphic forms on GL(n) via the Rankin-Selberg method. We give here a partial complement to this result: using some explicit geometry of fundamental regions, we prove a large sieve inequality yielding sharp results in a region distinct to that in [6]. As an application, we give a generalization to GL(n) of Duke’s multiplicity theor...

متن کامل

On local gamma factors for orthogonal groups and unitary groups

‎In this paper‎, ‎we find a relation between the proportionality factors which arise from the functional equations of two families of local Rankin-Selberg convolutions for‎ ‎irreducible admissible representations of orthogonal groups‎, ‎or unitary groups‎. ‎One family is that of local integrals of the doubling method‎, ‎and the other family is‎ ‎that of local integrals expressed in terms of sph...

متن کامل

LOCAL GEOMETRIZED RANKIN-SELBERG METHOD FOR GL(n)

Following G. Laumon [12], to a nonramified `-adic local system E of rank n on a curve X one associates a complex of `-adic sheaves nKE on the moduli stack of rank n vector bundles on X with a section, which is cuspidal and satisfies the Hecke property for E. This is a geometric counterpart of the well-known construction due to J. Shalika [19] and I. Piatetski-Shapiro [18]. We express the cohomo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999